附件:设置1:设置2:设置3:本书分析研究了深度学习相关的网络模型以及不同网络模型的算法结构、原理与核心思想及实战案例。主要内容涉及人工神经网络、模糊神经网络、概率神经网络、小波神经网络、卷积神经网络及其扩展模型、深度生成对抗网络及其扩展模型、深度受限玻尔兹曼机及其扩展模型、深度信念网络及其扩展模型、深度自编码器及其扩展模型等深度学习网络结构、原理与方法。通过深度学习网络在信道盲均衡、目标识别、图像分类和运动模糊去除、特征提取与识别、缺陷早期诊断等领域中的应用案例, 为读者提供应用深度学习网络解决具体问题的思路和方法。摘要:有书目 (第303-314页)
附注提要
本书分析研究了深度学习相关的网络模型以及不同网络模型的算法结构、原理与核心思想及实战案例。主要内容涉及人工神经网络、模糊神经网络、概率神经网络、小波神经网络、卷积神经网络及其扩展模型、深度生成对抗网络及其扩展模型、深度受限玻尔兹曼机及其扩展模型、深度信念网络及其扩展模型、深度自编码器及其扩展模型等深度学习网络结构、原理与方法。通过深度学习网络在信道盲均衡、目标识别、图像分类和运动模糊去除、特征提取与识别、缺陷早期诊断等领域中的应用案例, 为读者提供应用深度学习网络解决具体问题的思路和方法。