附件:设置1:设置2:设置3:本书以直白、简短的方式向读者介绍了生成对抗网络, 并且教读者如何使用PyTorch按部就班地编写生成对抗网络。全书共3章和5个附录, 分别介绍了PyTorch基础知识、用PyTorch开发神经网络、改良神经网络以提升效果、引入CUDA和GPU以加速GAN, 以及生成高质量图像的卷积GAN、条件式GAN等话题。附录部分介绍了在很多机器学习相关教程中被忽略的主题, 包括计算平衡GAN的理想损失值、概率分布和采样, 以及卷积如何工作, 还简单解释了为什么梯度下降不适用于对抗式机器学习。摘要:
附注提要
本书以直白、简短的方式向读者介绍了生成对抗网络, 并且教读者如何使用PyTorch按部就班地编写生成对抗网络。全书共3章和5个附录, 分别介绍了PyTorch基础知识、用PyTorch开发神经网络、改良神经网络以提升效果、引入CUDA和GPU以加速GAN, 以及生成高质量图像的卷积GAN、条件式GAN等话题。附录部分介绍了在很多机器学习相关教程中被忽略的主题, 包括计算平衡GAN的理想损失值、概率分布和采样, 以及卷积如何工作, 还简单解释了为什么梯度下降不适用于对抗式机器学习。